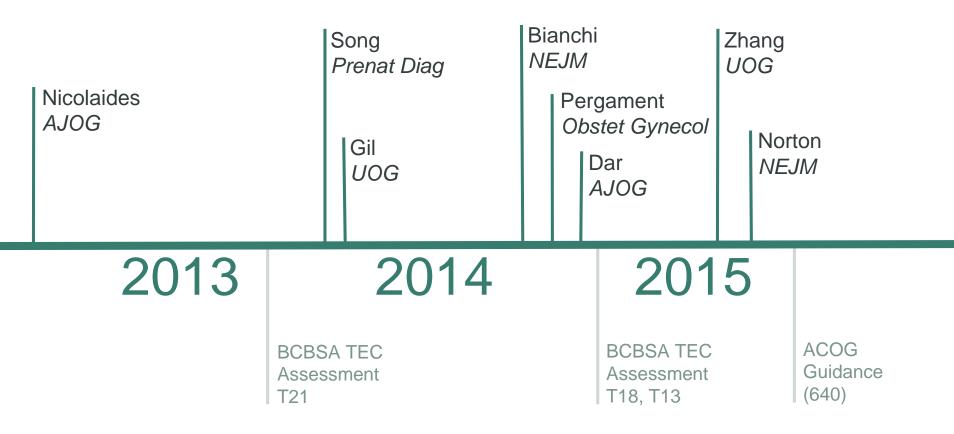
Non-Invasive Prenatal Testing Cell-free DNA

Prenatal Screening

1960	<mark>s 1980</mark>	s 198	8 1996	1997	2011 – Present	
Matern Age	al MSAF	P Triple Scree		FTS NT/Serum	NIPT Quantitative	NIPT SNP
27%	36%	60–74	<mark>%</mark> 70–81%	80–95%	66–>99%	92–>99%
All	T21	T21 T18	T21 T18	T21 T18 T13	T21 T18 T13 SCA	T21 T18 T13 SCA Triploidy
					JUA	Microdeletions



Prenatal Testing Algorithm

>90,000 average risk patients evaluated in 8 studies

Not for Further Reproduction or Use

Screening for Trisomy 21

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Cell-free DNA Analysis for Noninvasive Examination of Trisomy

Mary E. Norton, M.D., Bo Jacobsson, M.D., Ph.D., Geeta K. Swamy, M.D., Louise C. Laurent, M.D., Ph.D., Angela C. Ranzini, M.D., Herb Brar, M.D., Mark W. Tomlinson, M.D., Leonardo Pereira, M.D., M.C.R., Jean L. Spitz, M.P.H., Desiree Hollemon, M.S.N., M.P.H., Howard Cuckle, D.Phil., M.B.A., Thomas J. Musci, M.D., and Ronald J. Wapner, M.D.

	Ν	Sensitivity	False Positive Rate
NIPT - Avg Risk (<35 years)	11,994	100% (82.4-100)	0.05%
NIPT - All Patients	15,841	100% (90.7-100)	0.05%
Standard Screening	15,841	78.9% (62.7-90.4)	5.4%

BEST false positive rate = BEST Positive Predictive Values

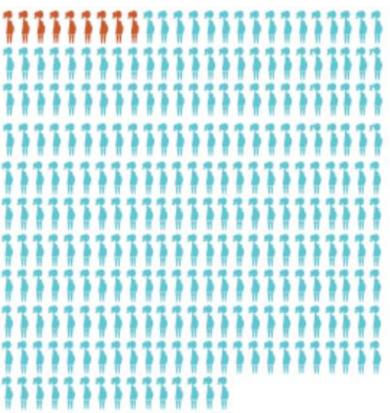
Positive predictive value= True positives /(True + False positives)

	Total	T21	T18	T13	45X
Number of samples	17,885 ^a				
Aneuploidy detected (%)	2.0%				
Aneuploid calls with confirmatory studies	222	154	29	21	18
True positives	184	140	27	8	9
False Positives	38	14	2 ^a	13 ^b	9
Positive Predictive Values (PPV)	83%	91%	93%	38%	50%

Comparing Screening Options

	Maternal Serum Screening ^{1–6}	NIPT (Panorama®) ^{7–8}
Gestational age	~11–22 wks	9+ wks
Nuchal Translucency	Sometimes	No
Open Neural Tube Defects	Sometimes	No
T21 Positive Predictive Value	3.4%	91%
False positive rate	5%	<1%

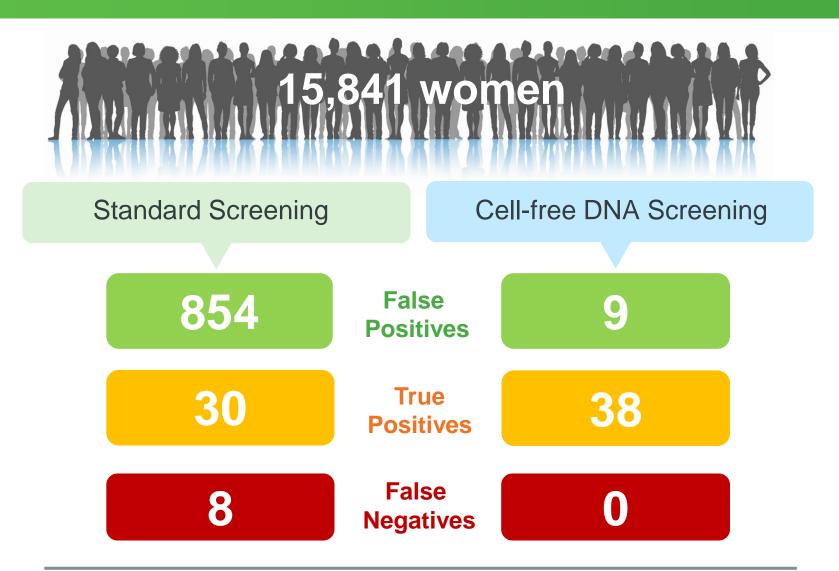
¹Nicolaides K H et al. Ultrasound Obstet Gynecol. 2005; 25(3)221-6.
²Wapner R et al. N Engl J Med. 2003; 349 (15); 1405-13.
³Malone FD et al. N Eng J Med. 2005; 353(19): 2001-11.
⁴PerkinElmer Labs / NTD 2013, http://ntdlabs.com/maternal-marker-testing/.


⁵Quest Diagnostics 2014, www.questdiagnostics.com
⁶Norton M et al. NEJM. 2015 Apr 23;372(17):1589-97
⁷Pergament et al. Obstet Gynecol. 2014 Aug;124(2 Pt 1):210-8
⁸Dar P et al. Am J Obstet Gynecol 2014 Nov;211(5):527

Natera™
 Conceive. Deliver.

Not for Further Reproduction or Use

Trisomy 21 Positive Predictive Value


MSS

265 women will undergo invasive testing to discover **9** true positives.¹

Screening for Trisomy 21

Prenatal Testing Landscape is Rapidly Changing

Professional guidelines

Cost-effectiveness

Insurance coverage

Professional Society Guidelines on NIPT

	Organization	Policy	Date
ACCMCG	ACMG	"ACMG recommendation that NIPS can be used as a first line screening tool."	Webinar 2015
	ACOG	"any patient may choose cell-free DNA analysis as a screening strategy for common aneuploidies regardless of her risk status, the patient choosing this testing should understand the limitations and benefits of this screening paradigm in the context of alternative screening and diagnostic options."	2015
ASHC	ASHG/ESHG	"Different scenarios are possible, including NIPT as an alternative first tier option"	2015
	ISPD	"The following protocol options are currently considered appropriate: 1. cfDNA screening as a primary test offered to all pregnant women."	2015

Cost Effectiveness Data

ORIGINAL ARTICLE

Prenatal screening for fetal aneuploidies with cell-free DNA in the general pregnancy population: a cost-effectiveness analysis

"Universal NIPT remained less costly than conventional MSS so long as the cost of NIPT was below \$619".

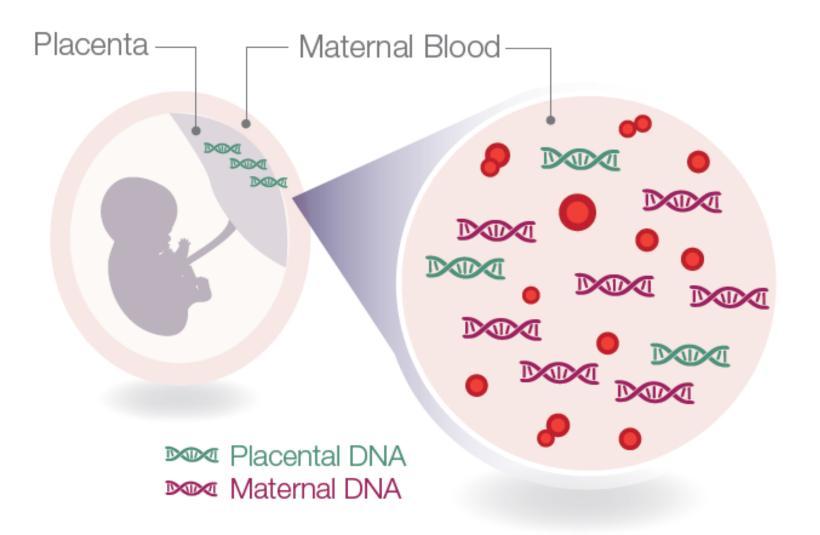
"As NIPT identifies more fetal trisomies than FTS, a NIPT unit cost of \$665 allows a cost per trisomy case identified to be equivalent to that of FTS."

"Replacing conventional screening with NIPT would reduce healthcare costs if it can be provided for \$744 or less in the general patient population."

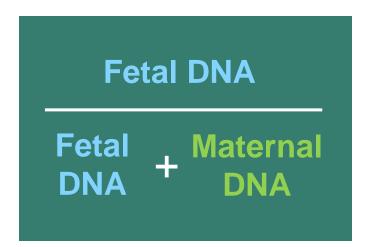
Low Risk Insurance Coverage

Cell-free fetal DNA-based prenatal screening for fetal aneuploidy (trisomy 13, 18, and 21) is considered **medically necessary** when all of the following criteria are met:

1. The individual to be tested is carrying a single gestation; and


2. The individual is using this as a screening strategy for fetal aneuploidies **regardless of risk status** and understands the limitations and benefits of this screening paradigm in the context of alternative screening and diagnostic options.

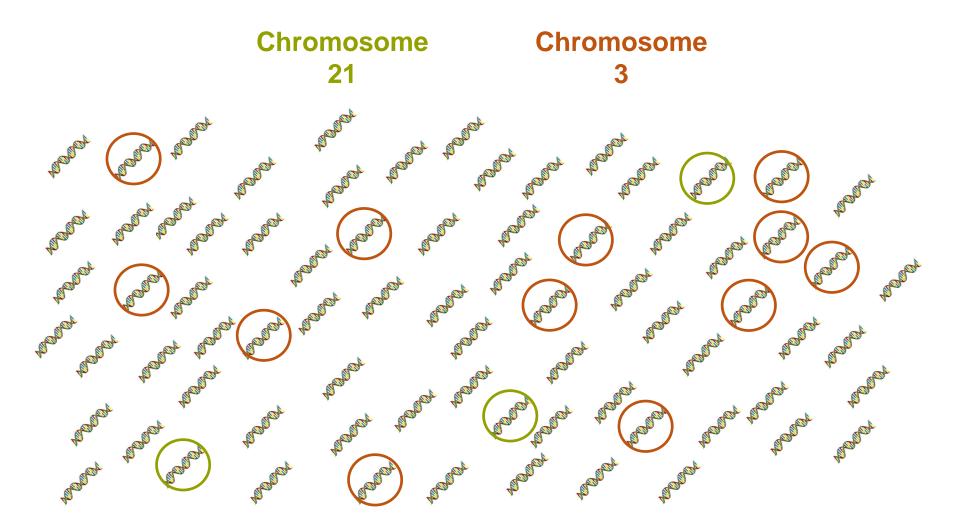
NIPT and the Panorama advantage


Cell-free DNA

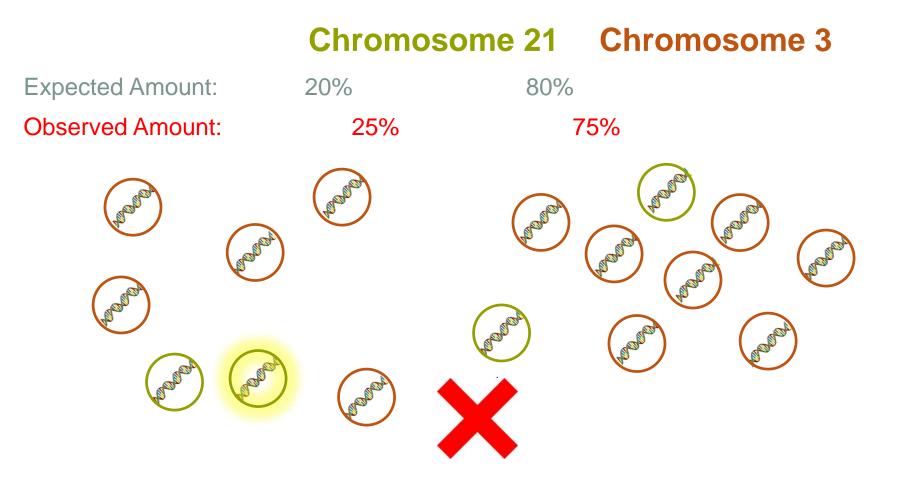
Fetal Fraction (FF) Matters

"...the measurement of fetal cfDNA is a basic quality metric required to ensure reliable interpretation of test results."¹

- Average fetal fraction is 10–12%*
- Varies by gestational age, maternal weight, placental and pregnancy factors
- Panorama[®] cutoff : 2.8%



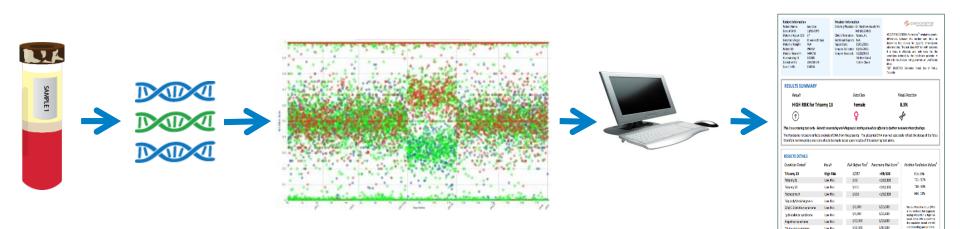
NIPT Methodologies


Counting

Not for Further Reproduction or Use

Counting

SNP = Single Nucleotide Polymorphism


- A DNA sequence variation occurring when a single base pair is changed
- Normal genetic changes that occur in every person
- Panorama[®] analyzes more than 13,000 SNPs

Our Technology

Proprietary SNP analysis distinguishes between maternal & fetal DNA

Prader-Millisendrome

Los 8/4 1/10,000

1/13,830

DNA "fingerprints"

- Panorama[®] is the only NIPT on the market that distinguishes between maternal and fetal DNA.
- Panorama[®] can identify different DNA "fingerprints" in a maternal blood sample, such as those from a vanishing twin.

Panorama[®] uniquely differentiates between maternal and fetal DNA

Fetal fraction

Maternal contribution

Vanishing twins

Fetal sex accuracy

Triploidy/complete mole

Panorama[®] uniquely differentiates between maternal and fetal DNA

Fetal fraction

Maternal contribution

Vanishing twins

Fetal sex accuracy

Triploidy/complete mole

NIPT on Non-Pregnant Women

	Counting	Counting	Counting	Counting	SNPs
	Lab 1	Lab 2	Lab 3	Lab 4	Natera
Result	Normal Female	Normal Female	Normal Female	No result	No Result
Fetal	3.9%	Not	Not	Insufficient	0.6%
Fraction	4.3%	Measured	Measured		Insufficient

Case Example: False Negative NIPT

- 35 year-old G₁P₀
- 6.9mm NT at 11+ weeks
- FTS result: high risk for T21 and T18/13
- Follow up by counting NIPT: "No aneuploidy detected"
- Amnio elected after abnormal U/S: 47,XY+21
- Retrospective analysis by the NIPT laboratory:

Fetal fraction: 1.7%

Allen R., Kezmarsky P., Lescale K., False Negative NIPT and Potential Implications for Genetic Counseling; (Abstract #47). Presented at the 2013 ACMG Annual Clinical Genetics Meeting, 03/22/2013, Phoenix, AZ

Case Example: Low Fetal Fraction

- 36 year-old
- Panorama at 10 weeks: FF<1%</p>
- Redraw Panorama at 12 weeks: FF1.0%
- Sample sent to counting lab: normal female fetus
- Ultrasound at 18 weeks: multiple anomalies
- Amniocentesis: 69,XXX (triploidy)

Panorama[®] uniquely differentiates between maternal and fetal DNA

Fetal fraction

Maternal contribution

- Vanishing twins
- Fetal sex accuracy
- Triploidy/complete mole

Case Example: Maternal Contribution

- 38 year-old G₂P₁
- Counting NIPT "positive" for Turner syndrome
- Amniocentesis: 46,XX. Postnatal: 46, XX
- Mother's karyotype: 45,X[2], 46,XX[18]

Panorama[®] uniquely differentiates between maternal and fetal DNA

Fetal fraction Maternal contribution

Vanishing twins

Fetal sex accuracy

Triploidy/complete mole

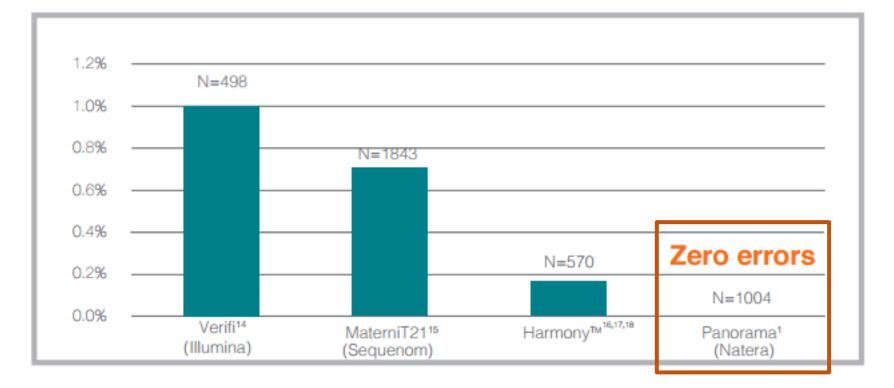
Case Example: Vanishing twin

- 35 year-old G₂P₁
- History of "vanishing twin" at 8 weeks gestation
- Panorama[®] at 10 weeks: "Results consistent with possible triploid or vanishing twin"
- Counting NIPT at 13 weeks: "Normal male fetus"
- Ultrasound at 17 weeks: female fetus
- Delivery: normal female, 46 XX chromosomes

Panorama[®] uniquely differentiates between maternal and fetal DNA

Fetal fraction Maternal contribution

Vanishing twins


Fetal sex accuracy

Triploidy/complete mole

As many as 1/100 cases can have gender discrepancy when using counting methodologies.

¹Mazloom et. al. 2013. Prenat Diagn. ²Verifitest.com ³Nicolaides et. al. 2013. Fetal Diagn Ther. ⁴Nicolaides et. al. 2013. Prenat Diagn. ⁵Pergament et al. 2014. Obstetrics & Gyn.

Not for Further Reproduction or Use

Panorama[®] uniquely differentiates between maternal and fetal DNA

Fetal fraction

Maternal contribution

Vanishing twins

Fetal sex accuracy

Triploidy/complete mole

Triploidy

The str	Uthomas 2	albound "			and a subsection of the subsec
Long .			ada ada		3 <u>8</u> 8
	100	b b b	8 2 8	A 8	1
858	a 🚡 8	÷ 6 6	868	9 <u>1</u>	3

Only Panorama[®] Can Detect Triploidy

- I in 1000 pregnancies at 10 weeks¹
- Risk for partial molar pregnancy
- Counting method cannot recognize extra copy of all chromosomes
- Provides risk assessment for couples with

prior pregnancy with triploidy

¹Snijders, et al. Fetal Diagn Ther 1995; 10:357-9.
²Berkowitz, RS and Goldstein, DP, Cancer 1995; 76: 2079–2085.
³Soper, J. Obstet Gynecol 2006; 108:176–87
⁴Chromosome Abnormalities and Genetic Counseling, Gardner and Sutherland, 2004.

Case Example: Complete Molar Pregnancy

- 29 yo G₁P₀
- Panorama[®] at 9 weeks
- No ultrasound performed at time of blood draw
- No significant medical history
- Results show paternal isodisomic uniparental disomy (UPD)

Simon AL et al. Detection of a complete molar pregnancy by single nucleotide polymorphism-based noninvasive prenatal testing. Ultrasound Obstet Gynecol. 2015 Mar 23. doi: 10.1002/uog.14854. [Epub ahead of print]

Not for Further Reproduction or Use

The Panorama® Advantage

- Superior aneuploidy screening vs. maternal serum screening
- Differentiates between maternal and fetal/placental DNA
- Screening for 22q
- Available for all patients

■ Spectrum natera preimplantation genetics (PGS/PGD)

Anora™ natera miscarriage test (POC)

The tests described have been developed and their performance characteristics determined by the CLIA-certified laboratory performing the test. These tests have not been cleared or approved by the U.S. Food and Drug Administration (FDA). Although FDA does not currently clear or approve laboratory-developed tests in the U.S., certification of the laboratory is required under CLIA to ensure the quality and validity of the tests © 2015 Natera, Inc.